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A colorimetric sensor array consisting of designed receptors and metal salts was utilized for discrimination
of structurally similar carboxylic acid analytes (25-31). For the discrimination, the receptors do not
need to have a 1:1 guest-receptor binding stoichiometry. More than 1:1 stoichiometry, such as 1:2 or
2:1, affords useful information for the discrimination. The importance of data preselection and data
preprocessing methods prior to principal component analysis is discussed. These methods change a score
plot of principal components in a manner that enhances discrimination. Using the higher order
stoichiometry, and the preselection as well as preprocessing discussed herein, we found that an addition
of only one designed receptor to an array of metal salts can discriminate the structurally similar analytes.

Introduction

Pattern recognition using “differential receptors” has become
an active research area that mimics mammalian olfaction and
gustation.1-3 This method is a very powerful tool because it is
possible to analyze diverse chemical structures and complex
mixtures. In these methods, a synthetic receptor does not have
to possess specific or very selective binding to a target analyte.
Instead, it is only necessary that the receptors in the array bind

differently to various analytes, thereby creating various patterns
for the analytes. Nevertheless, some degree of rational design
is still effective for differential receptors because the receptors
must have some affinity to the analytes, as well as some
selectivity.1d In this context, we are interested in exploring
receptors that have affinity to the analytes of interest but are
not designed and synthesized, alongside fully designed receptors.
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For pattern recognition purposes, there are several advantages
to the use of indicator displacement assays (IDAs).4,5 In IDAs,
a receptor is bound to an indicator through reversible covalent
bonds or noncovalent interactions. When the receptor indicator
complex interacts with the analyte the indicator is displaced,
resulting in signal modulation. Hence, it is simple to set up an
array with various combinations of receptors and commercially
available indicators. Moreover, indicators and their concentra-
tions can be chosen to optimize the response (e.g., affinity to
receptors, optical properties of indicators, indicator-receptor
ratio). In addition, complicated syntheses of indicator-linked
receptors are not necessary. Yet, there are only a handful of
investigations using IDAs for pattern recognition.6,7

In pattern recognition, the data of the sensor array require
multivariate analysis such as principal component analysis
(PCA) because the sensor array often yields innumerable and
overlapping redundant data. Therefore, PCA is used to reduce
the dimensionality of a data set to two or three principal
components, which provide an adequate representation of the
data. Prior to PCA, there are two important processes, data
preselection and data preprocessing, which can provide more
useful inputs to the PCA.

In this article, we report that (1) it is useful to set up an array
of designed receptors and nondesigned receptors for discrimina-
tion of structurally similar analytes, (2) complex guest-receptor
binding stoichiometries in IDAs for pattern recognition can
create useful inputs although simple stoichiometry are preferred
for the concentration detection of analytes, and (3) the data
preselection and data preprocessing yield more useful input to
the PCA.

Results and Discussion

An Array of Designed Receptors and Nondesigned
Receptors. We decided to explore the use of an array of
designed receptors and nondesigned receptors for discrimination
of structurally similar analytes because highly selective binding
is unnecessary for the pattern recognition. These two kinds of
receptors compensate for various faults in the use of either alone.
Nondesigned receptors overcome the need for syntheses inherent
designed receptors, and designed receptors compensate for a
lack of selective binding for nondesigned receptors.

As designed receptors, we exploited a potpourri of previously
published receptors from our group that target carboxylic acid
derivatives (Figure 1).8-13 The amine and guanidinium groups
in these structures are logical choices for analysis of carboxylic
acid analytes. Boronic acid groups were utilized for diol and
R-hydroxycarboxylic acid analytes. The addition of the analyte

causes a change in the spectral response of the receptor indicator
complexes solution as shown in Scheme 1. In the presence of
the metal, 1:1 metal-ligand complexes for 6 and 7 are formed
that have been discussed perviously.14 These metal complexes
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FIGURE 1. Structures of designed receptors.

SCHEME 1. Indicator Displacement Assay between
Host-Indicator Complex and Analyte
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coordinate to amino acid analytes.15 Compounds 8 and 9 have
metal and guanidinium functional groups, both useful in
coordination to carboxylate anions.

As nondesigned receptors, simple metal salts were considered
because there are many coordination sites at a metal center. As
a result, cross-reactivity results from the different coordination
modes that can be obtained, as shown in Scheme 2. As a
hypothetical example, if the binding constant between the
analyte and the metal is small, the light green color of 10 is
dominant. If the analyte displaces the indicator to make complex
11, the light blue of 11 and the purple color of the free indicator
appear. Lastly, pure purple of the free indicator dominates when
the displacement by the analyte is complete (12). Hence, the
color variation depends on the coordination character of each
analyte to the metal. If there are fewer coordination sites, the
resulting information is lower, as with only one coordination
site that would give only two states. This complex guest-receptor
binding stoichiometries in IDAs for pattern recognition can
create useful information for the discrimination. Recent studies
of the discrimination of amino acids or dipeptides by IDAs using
nondesigned receptors such as a single Cp*Rh complex (Cp*
) η5- pentamethylcyclopentadienyl) or a mixture of CuCl2 and
NiCl2 has been performed by Severin’s group.7

In contrast to the use of a single receptor system, it is known
that an array consisting of many types of receptors increases
the effectiveness of discrimination.2b,16 Therefore, we decided
to use many types of receptors for the array. Metal salts 13-17
were selected on the basis of their hydrolysis constants and their
large exchange rate constants for substitution of inner-sphere
water ligands (Figure 2).17

Structures of Indicators and Analytes. The indicators
(18-24) were chosen to represent a large diversity of structures
but also because of their negative charges and ability to bind
boronic acids and metal salts (Figure 3).

The analytes 25-31 in Figure 4 are components of wine.18

They can be classified roughly into three groups, R-hydroxy-
carboxylic acid analytes, phenolic acid analytes, and R-amino
acid analytes. They were chosen to represent very structurally
similar analytes, hence challenging our methods. Compounds
25 and 26 differ only by one hydroxyl group, 27 and 28 by
only a vinylene group, and 30 and 31 by only a methylene.

Initial Studies on 6-9. Receptors 6-9 were initially studied
to determine their binding stoichiometry with indicators. If no
isosbestic point in the UV-vis spectra is observed during a
titration, it indicates a mixture of three or more species that
include an indicator.19 Higher order stoichiometries were found
for all receptor-indicator combinations that were used for the

array analysis (see Supporting Information). Hence, the concept
in Scheme 2 is applicable to designed receptors 6-9. Designed
receptors created by synthetic chemists are ordinarily utilized
in 1:1 receptor-guest stoichiometries because this simplifies
the mathematical equations that describe the binding isotherms.
Therefore,adesignedreceptorthatdisplayscomplexreceptor-guest
stoichiometries has attracted less attention. However, as shown
herein, complex stoichiometries can be useful for pattern-
recognition-based discrimination.

Coordination Modes of Metal Salt 13-17. As with the
designed receptors, we first studied the binding properties of
the metal salts. We measured UV-vis spectra of an indicator
at constant concentration during a titration of a metal salt to
delineate the coordination modes. In the titration experiments
for each combination of metal salts 13-17 and indicators 18-24
(a total of 35 combinations), we observed four phenomena: (1)
a precipitate appeared during the titration (14 and 18, 14 and
24); (2) there was no response to addition of a metal salt (13
and 22, 16 and 20, 16 and 22); (3) during the titration, the
absorbance increased gradually without change in the shape of
the UV-vis spectrum (14 and 22, 15 and 22); and (4) the
UV-vis spectrum of the metal salt-indicator combinations
behaved in a useful manner (all remaining combinations). One
such UV-vis spectra using CuCl2 and indicator 20 is shown in
Figure 5, revealing the lack of an isosbestic point. Indeed, an
isosbestic point was not commonly observed, with the exception
of 15 and 18, 15 and 20. However, a binding study for 15 and
18, 15 and 20 did not fit a 1:1 algorithm,19,20 analogous to
previous studies from our group (see Supporting Information).

Hence, the metal salts all display stoichiometries higher than
1:1 with indicators 18-24. There are several possibilities for
the structures of the complexes. Feasible association modes are
depicted in Scheme 3. It is likely that an indicator has at least
two coordination sites when an excess of a metal salt is used.
Further, metal complexes are known to aggregate,21 and hence
different aggregates from different indicators and analytes results
in the complex UV-vis spectra that affords information to be
used in analyte discrimination.

Procedure for Discrimination. The sensor array was as-
sembled in a 96-well plate by simply mixing each solution of
receptors 1-9, 13-17 and indicators 18-24 (total 98 combina-
tions). After addition of each analyte of Figure 4 to the array,
patterns are created for each analyte from the recorded UV-vis
spectra of each well. Because the pattern is composed of
multidimensional information, a mathematical treatment of the
UV-vis spectra is needed to visualize and understand the data.
Principal component analysis is one of chemometric tools used
to reduce the number of dimensions in such a data set. However,
before PCA, there was still a need to select a subset of the whole
data set, because some of data likely will not be significant but

(16) (a) Ulmer, H.; Mitrovics, J.; Noetzel, G.; Weimar, U.; Göpel, W. Sens.
Actuators, B 1997, 43, 24. (b) Mitrovics, J.; Ulmer, H.; Weimar, U.; Göpel, W.
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York, 2000; Vol. 2.
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371.

FIGURE 2. Structure of nondesigned receptors.

SCHEME 2. Coordination Modes of 1:2 Complexes for the
Discrimination of Analytes
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rather will have a negative effect on the analysis because it
represents noise.

Selection of Proper Indicator-Receptor Combinations
in the Sensor Array. All of the 98 combinations of indicators
and receptors are not useful for pattern recognition of the
analytes (e.g., same selectivity to analytes). After measurement
of the UV-vis spectra, the optimum combinations of indicators
and receptors were derived on the basis of the following four
criteria (see Table S-1 in Supporting Information): (1) there is
no precipitation after addition of an analyte, (2) the data is
reproducible in three repetitive UV-vis measurements, (3) there
is at least one analyte among 25-31 that varies in its response
in the UV-vis spectra, and (4) the response should arise from
interaction to the receptor and not from direct interactions
between the indicator and the analyte, such as a subtle difference
of pH. To confirm point four, UV-vis spectra without receptors
(only indicators and analytes) were compared to the data (see

Supporting Information). Clearing these four criteria, 23 com-
binations of indicators and receptors were selected for further
analysis.

Preselection. The data set consisting of UV-vis measure-
ments for 23 combinations of receptors and indicators was still
quite large for PCA. The data of UV-vis spectra collected every
5 nm through 400-700 nm (61 wavelengths) was used.
Therefore, 61 wavelengths for 23 indicator-receptor combina-
tions yielded 1403 variables. Hence, the size of the data matrix
for seven analytes (25-31) with three repetitive experiments
(7 × 3 ) 21) was 21 × 1403 ) 29,463 (Figure 6).

All variables are not meaningful for the classification of the
analytes. For instance, Feature 1 in Figure 7, which could come
from several variables, is only indicating that the samples are
carboxylic acids. Further, if variables that only indicate Fea-
ture 2 are used for the calculation, the result of classification
will be simply R-hydroxycarboxylic acids, phenolic acids, and
R-amino acids.

FIGURE 3. Structures of indicators.

FIGURE 4. Structures of analytes.

FIGURE 5. UV-vis spectra of the indicator 20 at constant concentra-
tion (50 µM) in the presence of CuCl2 (0-200 µM). The spectra were
recorded in 75% methanolic aqueous solution buffered by 10 mM
HEPES at pH 7.5. An isosbestic point was not observed.

SCHEME 3. Feasible Different Scenario for Various
Coordination Modes
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The later classification result was found when an arbitrary
method of reducing the data was used. PCA for 25-31 showed
only three classes when 230 variables of 1403 were randomly
selected from the full data set (Figure 8). We show below that
by selecting the appropriate 40 variables (Feature 3 in Figure 7), we can achieve full classification for 25-31. This is an

example that a reduced sensor array can sometimes have a better
ability for classification of analytes using PCA.22

To accomplish the desired selection of Feature 3, we decided
to use the two methods. One was based on an analysis of
variance (ANOVA),23 while the second was direct comparison
of the data, because both methods have characteristic strengths.
In general, an F-ratio in the ANOVA is used to test various

(22) (a) Holmberg, M.; Winquist, F.; Lundström, I.; Gardner, J. W.; Hines,
E. L. Sens. Actuators, B 1995, 26-27, 246. (b) Natale, C. D.; Davide, F. A. M.;
D’Amico, A.; Sberveglieri, G.; Nelli, P.; Faglia, G.; Perego, C. Sens. Actuators,
B 1995, 24-25, 801. (c) Lidén, H.; Mandenius, C.-F.; Gorton, L.; Meinander,
N. Q.; Lundström, I.; Winquist, F. Anal. Chim. Acta 1998, 361, 223. (d) Gibson,
T. D.; Prosser, O.; Hulbert, J. N.; Marshall, R. W.; Corcoran, P.; Lowery, P.;
Ruck-Keene, E. A.; Heron, S. Sens. Actuators, B 1997, 44, 413.

FIGURE 6. Data matrix consisting of 21 samples of seven analytes with three repetitive experiments and 1403 variables. Total data points in this
matrix was 21 × 1403 ) 29,463 data points.

FIGURE 7. An appropriate feature for the classification of the analytes.

FIGURE 8. Three classes (R-hydroxycarboxylic acids, phenolic acids,
and R-amino acids) in a score plot of the first three principal components
(PCs) for 25-31. The PCA was performed with a random selection of
230 variables and standardization preprocessing.
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statistical hypotheses about the means of the distributions.
However, it could be used for the selection of variables (see
Supporting Information for the details). The F-ratios shown in
Figure 9 were calculated for each receptor-indicator combina-
tion and wavelength. We observed high F-ratios at particular
indicator-receptor combinations and particular wavelengths
when the analytes respond differently. Lastly, the variables used
were selected based on cases that have F > 300 (the result of
the PCA are shown later).

However, this F-ratio can be high if only one analyte reacts
very differently, meaning that complete analyte discrimination
would not be achieved. Also, the F-ratio can be low if all of
the analytes react differently but these differences are relatively
small, which may represent useful information for discrimina-
tion. Therefore, one should be cautious in using only ANOVA-
based methods to carry out the preselection.

The second preselection we used involved direct comparison
of the data. It is based on an idea that a large difference of the
absorbances between analytes is the best information for the
ultimate discrimination. Thus, subtractions of absorbances for
all of the cases were done to create Figure 10 for comparisons.

First, the averages of the three experiments for each analyte
were calculated. Next, subtraction of the averaged absorbances

between each two analytes was calculated for all binary
comparisons of analytes (21 cases). There are a total of 21 cases
in the matrix because the each combination of two of the seven
analytes are used (7C2 ) 7P2/2! ) 21 cases). These subtracted
values were transformed to the absolute values shown in Figure
10, because only differences are important. The largest differ-
ences of the absorbances given in Figure 10 indicate the
particular indicator-receptor combinations and wavelengths that
contain useful information to distinguish two analytes.

We created a matrix of a rank ordering, which corresponds
to the order of the differences from first to 1403th in each row
of Figure 10, so that we could know which combinations of
indicators/receptors were the most effective for the discrimina-
tion of each two specific analytes (Figure 11). However, the
indicator-receptor combinations and wavelengths that have a
large difference for two specific analytes can be near the worst
combinations for a different set of two analytes. For example,
one indicator-receptor combination and wavelength, which was
in first place of rank ordering in the row |A27-A25| and therefore
the best to distinguish analytes 25 and 27, was the worst for
the discrimination of 25 and 26 (1403th place in the row |A26-
A25|). The poor selection between 25 and 26 represent a case of
Feature 2 in Figure 7 (25 and 26 belong to R-hydroxycarboxylic
acids and only 27 is different).

Therefore, we needed to choose a subset of the indicator-
receptor combinations and the wavelengths, which have differ-
ences in all rows of Figure 10. The subset was chosen in the

(23) (a) Ciosek, P.; Brzózka, Z.; Wróblewski, W. Sens. Actuators, B 2004,
103, 76. (b) Johnson, K. J.; Synovec, R. E. Chemom. Intell. Lab. Syst. 2002, 60,
225. (c) Johnson, K. J.; Rose-Pehrsson, S. L.; Morris, R. E. Energy Fuels 2004,
18, 844.

FIGURE 9. Matrix used for the calculation of the F-ratios.
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FIGURE 10. Matrix for direct comparison-based preselection. The absolute values of the subtraction between absorbances of two analytes. AX )
the averaged absorbance of three experiments of analyte X.

FIGURE 11. Matrix of rank ordering for direct comparison-based preselection. The rank ordering was done for each row.
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following manner. The smallest sum of differences in one row
means that the discrimination of these two analytes is the most
difficult case. Therefore, selection of a column should be done
to compensate this small sum. The highest place of rank order
in the row of smallest total sum was used to choose a column
of data that will be used in the PCA.

The procedure for the direct comparison-based preselection
is illustrated in Scheme 4. As the first step in the preselection,
the total sums of each column in the whole matrix (Figure 10)
were used because there was no subset at the beginning. We
first paid attention to the row |A31-A30|, because it had the lowest
sum. The highest rank order in the |A31-A30| now was found,
corresponding to the column that involves receptor 8, indicator
22, and wavelength 500 nm, but row A31-A28 had the smallest
value in the column of receptor 8, indicator 22, and wavelength
500 nm (shown in the light blue square in Scheme 4).

So we use this column in the final PCA, but we need to
compensate for the lack of discrimination of 31 and 28.
Therefore, the first place of rank ordering in the row A31-A28

was found. It is receptor 8, indicator 22, and wavelength 400

nm. So, this column will be used in the final PCA also.
Hence, in each case we found the lowest value of the sum
and selected the one column that has the highest rank order
to guide the next selection of a column. We again calculated
the sums of each row for the expanded set of columns to be
used. Finally, only 40 or 50 of the 1403 variables were
selected for PCA (the results of PCA are shown later). This
method was time-consuming because all of the cases needed
to be compared.

Data Preprocessing. In chemometrics data preprocessing
plays a very important role. Proper preprocessing can improve
the results, but improper preprocessing leads to inaccurate
interpretations. Unfortunately, no general guidelines exist to
decide the suitable data preprocessing method.3,24 In our study,
it was instructive to examine several preprocessing strategies
to determine which is best for PCA.

We decided to explore two preprocessing strategies,
referred to as “mean centering” and “standardization” (see

(24) Brereton, R. G. Chemometrics Data Analysis for the Laboratory and
Chemical Plant; Wiley: San Francisco, 2003; Chapter 4.

SCHEME 4. Schematic Procedure of Direct Comparison-Based Preselection
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Supporting Information for details). In mean-centering
preprocessing the largest variances of each column dominate
the PCA. Hence, small but meaningful variances become lost.
On the other hand, standardization enhances small errors or
meaningless data, because each variable has the same
importance. To demonstrate these differences, the imaginary
UV-vis spectra of analytes A-D with two repetitive
experiments were created as shown in Figure 12. Using our
direct comparison-based preselection method, 400, 450, and
500 nm were good choices for the PCA in both cases. In the
case of Figure 12a, the mean centering was more practical
than the standardization because standardization equally
weights less relevant data at 400 and 500 nm (Figure 13). In
the case of Figure 12b, standardization was more effective
than the mean centering because mean centering deempha-
sized the data at 450 nm relative to that at 400 and 500 nm
because the differences at 450 nm are small (Figure 14). So
it is necessary to apply both preprocessing methods for the
PCA using ANOVA-based preselection or our direct com-
parison-based preselection.

Principal Component Analysis. After ANOVA-based or our
direct comparison-based preselection methods, PCA was applied

with both mean centering and standardization preprocessing.
The results are shown in Figures 15 and 16. The ANOVA-
based preselection with mean centering worked well (Figure
15a), while analytes 30 and 31 overlapped with the standardiza-
tion preprocessing (Figure 15b). The direct comparison-based
preselection accomplished the discrimination of all analytes
25-31, which means the data set includes the proper informa-
tion for Feature 3 in Figure 7. The two data preprocessing
methods showed acceptable results, although the shape of the
score plots are different.

To compare the ability of a hybrid array of designed receptors
and nondesigned receptors to a lack of design, only the data of
nondesigned receptors (the variables chosen by the direct
comparison-based preselection method) was employed for use
in PCA (Figure 13). Analytes 27 and 31 in Figure 17a and 27
and 28 in Figure 17b were close to each other in the score plots.
After addition of four variables from the designed receptor (8),
good separation in the score plot was obtained (Figure 18). As
a consequence, the array of nondesigned metal receptors and
only one designed receptor (8) could discriminate the various
structurally similar analytes.

FIGURE 12. Imaginary UV-vis spectra of analytes A-D for demonstration of the two data preprocessing methods. Top: the averaged UV-vis
spectra from two measurements. Bottom: the absorbances of two measurements at 400, 450, and 500 nm.

FIGURE 13. Score plots of first two PCs using the data set of Figure 12a. (a) Mean centering and (b) standardization.
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Conclusion

In summary, we have studied the attribute need in the PCA
discrimination of structurally similar analytes using an array of
designed receptors and metal salts. In this system, the array of
nondesigned metal salts and only one designed receptor could
discriminate the seven analytes. The data from the metal salts
have sufficient discrimination information because of the various
coordination modes of the metal. On the basis of a direct-
comparison data technique, we have also demonstrated that the
choice of receptor-indicator-wavelength can be optimized to
enhance the PCA. When a large amount of the data was used
in the PCA, the analytes were split into only three structurally

similar groups, such as R-hydroxycarboxylic acids, phenolic
acids, and R-amino acids. However, it was possible to distin-
guish all of the analytes in the score plot when appropriate data
was chosen by ANOVA-based or over direct comparison-based
preselection. We are currently expanding this approach by using
other commercially available receptors for analysis of mixtures
of analytes.

Experimental Section

General. The UV-vis measurements were performed on a Bio-
TEK Synergy HT Multi-Detection Microplate Reader using 96-
well plates or a Beckman DU-640 spectrophotometer. pH mea-

FIGURE 14. Score plots of first two PCs using the data set of Figure 8b. (a) Mean centering and (b) standardization. In score plot 1, the A and
B overlap each other.

FIGURE 15. Score plots of 88 variables selected by F > 300 (ANOVA-based preselection). (a) Mean centering preprocessing and (b) standardization
preprocessing.

FIGURE 16. Score plots of 50 variables selected by direct comparison-based preselection. (a) Mean centering preprocessing and (b) standardization
preprocessing.
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surements were made using Orion 720A pH meter. PCA and
ANOVA were performed using STATISTICA 5.5 or XLSTAT 7.5.
Spectroscopic grade methanol was purchased from Fisher Scientific.
Deionized water was used for preparation of stock solutions.
Hydroscopic ZnCl2 was dried under vacuum with heat before use.
The other reagents were used as purchased from various commercial
sources. Stock solutions of receptors, indicators, and analytes were
prepared with 75% methanolic aqueous solution buffered with 10

mM HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid)
at pH 7.5. Receptor solutions of 7 and 8 were prepared by mixing
appropriate stoichiometry of the metal salt and the ligand (7, ZnCl2:
ligand ) 2:1; 8, CuCl2:ligand ) 2:1). Compounds that have poor
solubility to methanolic water solution were dissolved using sonic
waves or by standing overnight.

UV-vis Measurement for PCA. Each solution of the indicator,
the receptor, and the analyte were mixed in a vessel of a 96-well
plate. A 75% methanolic water solution buffered with 10 mM
HEPES at pH 7.5 was added to the mixture to create a total volume
of 300 µL. Final concentration of the indicators: [18] and [19] )
100 µM; [20], [23], and [24] ) 50 µM; [21] and [22] ) 30 µM.
Final concentrations of the receptors and analytes were 150 µM
and 1.0 mM, respectively. The UV-vis spectra (350-700 nm) were
recorded after at least 5 min to allow the system to achieve
equilibrium.
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FIGURE 17. Score plots of 40 variables selected from UV-vis measurement of nondesigned metal receptors by direct comparison-based preselection.
(a) Mean centering preprocessing and (b) standardization preprocessing.

FIGURE 18. Score plot of the data set from nondesigned metal
receptors (40 variables) and designed receptor (11) (4 variables). The
data set was selected by direct comparison-based preselection. PCA
was performed with standardization preprocessing.
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